
New Bounds for the Flock-of-Birds Problem

Alexander Kozachinskiy

No Institute Given

Abstract. In this paper, we continue a line of work on obtaining suc-
cinct population protocols for Presburger-definable predicates. We focus
on threshold predicates. These are predicates of the form n ≥ d, where
n is a free variable and d is a constant.
For every d, we establish a 1-aware population protocol for this predicate
with log2 d + min{e, z} + O(1) states, where e (resp., z) is the number
of 1’s (resp., 0’s) in the binary representation of d (resp., d − 1). This
improves upon an upper bound 4 log2 d+O(1) due to Blondin et al. We
also show that any 1-aware protocol for our problem must have at least
log2(d) states. This improves upon a lower bound log3 d due to Blondin
et al.

Keywords: Population protocols · Presburger arithmetic · Threshold
predicates.

1 Introduction

Population protocols were initially introduced as a model of distributed compu-
tation in large networks of low-memory sensors [2]. There are also similarities
between population protocols and some models of social networks [10] and chem-
ical reactions [11], see a discussion in [5]. Perhaps, population protocols are most
known for their deep connection to logic, namely, to Presburger arithmetic. More
specifically, there is a theorem that a predicate over the set of natural numbers
is definable in Presburger arithmetic if and only if it can be computed by some
population protocol [4]. In this paper, we continue a line of work on the mini-
mization of population protocols [7, 8, 6]: given a Presburger-definable predicate,
what is the minimal size of a population protocol computing it? More specifically,
we obtain some new upper and lower bounds for threshold predicates.

We start by describing the model of population protocols in more detail.

The model. In this paper, we only consider population protocols for unary
predicates. On a high level, population protocols are a sort of finite-state dis-
tributed algorithms. A population protocol can have an arbitrary natural number
n on input. A population protocol computes a unary predicate R : Z+ → {0, 1}
if for every n ∈ Z+, having n on input, this protocol in some sense “converges”
to R(n).

In this framework, natural numbers are represented as populations of in-
distinguishable agents (or, in other words, as piles of indistinguishable items).
Namely, a natural number n corresponds to a population with n agents. It turns



2 A. Kozachinskiy

out that this way of representing natural numbers is quite convenient for Pres-
burger arithmetic. Intuitively, this is because to add two numbers in this model,
we just have to join the corresponding piles.

A population protocol Π is specified by a finite set of states, a transition
function mapping pairs of states into pairs of states, and a partition of the set of
states into “0-states” and “1-states”. Having a population of n agents on input, Π
works as follows. First, it puts every agent into an initial state (which is specified
in the description of the protocol and is the same for all n). Then agents start
to encounter each other. We assume that the time is discrete and that a single
encounter of 2 agents happens in each unit of time. This process is infinite and
is not controlled by Π. However, when two agents meet, their states are updated
according to the transition function of Π (given a pair of their states before the
encounter, it gives a pair of their states after the encounter).

Recall that states of Π are partitioned into 1-states and 0-states. This par-
tition is responsible for the opinions of the agents on the value of a predicate.
Namely, agents in 1-states (resp., 0-states) “think” that n belongs to a predicate
(resp., does not belong to a predicate).

Finally, we clarify what does it mean that Π converges to 1 (resp., 0) on n.
We want all agents to be in 1-states (resp., in 0-states) forever after some finite
time. However, it is meaningless to require this for all possible infinite sequences
of encounters. For example, it might be that the same two agents meet each other
over and over again. There is no chance agents will learn anything about n in
this way. So will only consider sequences of encounters that form fair executions
of our protocol.

To define this, we first need a notion of a configuration. An n-size configu-
ration of Π is a function from the set of n agents to the set of states of Π. In
turn, an execution of Π is an infinite sequence of configurations such that (a) in
the first configuration all agents are in the initial state; (b) every configuration,
except the first one, is obtained from the previous one via some encounter. In
turn, an execution is fair if for any two configurations C1 and C2 the following
holds: if C1 appears infinitely often in our execution, and if C2 is reachable from
C1 via some finite sequence of encounters, then C2 also appears infinitely often
in our execution. Finally, we say that Π converges to 1 (resp., 0) on n if all
fair executions have this property: all but finitely many configurations of this
execution include only agents in 1-states (resp., 0-states).

Threshold predicates. In this paper, we are interested in threshold predi-
cates, that is, predicates of the form:

R(n) =

{
1 n ≥ d,

0 otherwise,

where d ∈ Z+. For brevity, below we use the following notation for these predi-
cates: R(n) = I{n ≥ d}.

The problem of computing this family of predicates by population protocols
is called sometimes the flock-of-birds problem. This is because of the following



New Bounds for the Flock-of-Birds Problem 3

analogy due to Angluin et al. [2]. Imagine a flock of birds, where each bird is
equipped with a temperature sensor. Some birds are sick due to the elevated
temperature. Our sensors have very low action radius: two sensors can interact
with each other only if they are, say, at most 1 meter apart. Let there be n sick
birds. From time to time, two sick birds approach each other sufficiently close
so that their sensors can interact. We want to know whether n (the number of
sick birds) is at least some threshold d. This turns into a problem of computing
the predicate R(n) = I{n ≥ d} by a population protocol.

The first population protocol computing this predicate was given in [2] (in
fact, this was the first population protocol ever considered in the literature). It
works as follows. Imagine that initially every agent has 1 coin. An agent can
hold up to d − 1 coins. Consider an arbitrary encounter of two agents. If two
agents meet and have less than d coins in total, one of them gets all the coins of
the other one. In turn, if they have at least d coins in total, they both become
“converted”. That is, they start to think to n ≥ d (initially everybody thinks that
n < d). Finally, any agent who meets a converted agent also becomes converted.

Let us see why this protocol computes the predicate R(n) = I{n ≥ d}.
First, assume that n < d. Then in the beginning we have less than d coins. The
total number of coins is preserved throughout the protocol. In particular, no two
agents can have at least d coins in total. Thus, everybody will always think that
n < d, as required.

Assume now that n ≥ d. After any sequence of encounters it is still possible
to reach a configuration in which everybody is converted. Indeed, go to a config-
uration with the least possible number of non-bankrupt agents (bankrupt agents
are agents with 0 coins). In this minimal configuration, any two non-bankrupt
agents must have at least d coins in total (otherwise, one could reduce the num-
ber of such agents). Thus, it is possible to convert somebody. It remains to pair
all the agents one by one with a converted agent.

To finish the argument, consider any fair execution with n ≥ d agents. Let C
be any configuration which appears infinitely often in this execution. There is a
configuration D which is reachable from C and in which everybody is converted.
Thus, D must belong to our execution in some place. Starting from this place,
everybody will always think that n ≥ d.

1-awareness. The protocol which we just described has the following feature.
If n < d, then no agent will ever think that n ≥ d. In other words, to start
thinking that n ≥ d, an agent must obtain some proof of this fact. In our case,
a proof is a physical presence of d coins.

Blondin et al. [7] call this kind of protocols 1-aware protocols. Formally, they
are defined as follows. Let R : Z+ → {0, 1} be a predicate. We say that a protocol
computing this predicate is 1-aware if the following holds: for every n with
R(n) = 0, no execution of n agents ever contains an agent thinking that R(n) =
1.

It is not hard to see that 1-aware protocols can only compute threshold
predicates and the all-zero predicate. Indeed, if it is possible to make one of n
agents think that R(n) = 1, then the same is possible for all populations with



4 A. Kozachinskiy

more than n agents. Hence, any predicate R which can be computed by a 1-aware
population protocol is monotone: if R(n) = 1, then R(m) = 1 for every m > n.

Thus, 1-aware population protocols are a quite natural model for computing
threshold predicates. In this paper, for every d we study the following ques-
tion: what is the minimal number of states in a 1-aware population protocol,
computing the predicate R(n) = I{n ≥ d}?

Our results. Observe first that the protocol of Angluin et al., described
above, requires d+ 1 states. Indeed, in this protocol, agents just memorize how
many coins they hold. This is a number from 0 to d− 1. We also need one more
state for converted agents.

This can be drastically improved when d is a power of 2. Consider the same
protocol, but forbid any “transfers” of coins unless two agents have the same
number of coins. Then an agent can hold either 0 coins or a power of 2 of them.
Thus, this modified protocol requires only about log2 d states.

When n ≥ d, it works for the same reasons as before – minimize the number
of non-bankrupt agents and observe that there must 2 of them holding at least
d coins (because otherwise they must hold different powers of 2 whose sum is
smaller than d). In fact, this protocol also works when d is the sum of two powers
of 2, but for other d it does not. A problem is that it might be impossible to get
two agents with d coins in total (for example, when there are d = 4 + 2 + 1 = 7
coins, two agents can hold at most 4 + 2 = 6 coins).

Nevertheless, for every d, Blondin et al. [7] have constructed a 1-aware pro-
tocol with O(log d) states, computing the predicate R(n) = I{n ≥ d}. Their
construction has two steps. First, they solve the problem with a protocol in
which encounters can involve not only 2 but up to log2 d agents. Second, they
show a general result, transforming any protocol with “crowded” encounters into
a standard protocol. The second part of their argument is rather technical. As
a result, they get a protocol with 4 log2 d + O(1) states. Our first result is the
following improvement of this upper bound.

Theorem 1. For any d ∈ Z+ the following holds: there exists a deterministic
1-aware population protocol with log2 d+min{e, z}+O(1) states, computing the
predicate R(n) = I{n ≥ d}. Here e (resp., z) is the number of 1’s (resp., 0’s) in
the binary representation of d (resp., d− 1).

This upper bound never exceeds 3
2 log2 d + O(1). Indeed, the number of 1’s

in the binary representation of d is larger at most by one than the number of 1’s
in the binary representation of d − 1. Hence, e + z does not exceed the length
of the binary representation of d − 1 plus one. This implies that min{e, z} ≤
1
2 log2 d+O(1).

In fact, we devise two different protocols for Theorem 1: one with log2 d+e+
O(1) states, and the other with log2 d+ z+O(1) states. The first one is given in
Section 4 and the second one is given in Section 5. These two protocols require
different ideas. Unlike the construction of Blondin et al., our constructions are
direct.



New Bounds for the Flock-of-Birds Problem 5

Additionally, Blondin et al. in [7] show that any 1-aware protocol computing
R(n) = I{n ≥ d} must have at least log3 d states. Our second result is an
improvement of this lower bound.

Theorem 2. For any d ∈ Z+ the following holds: any 1-aware population pro-
tocol computing the predicate R(n) = I{n ≥ d} has at least log2 d+ 1 states.

Theorem 2 is proved in Section 3.

Other related works. In this paper we only deal with 1-aware protocols. For
general population protocols, the gap between upper and lower bounds is much
wider. A simple counting argument shows that for infinitely many d, the minimal
size of a population protocol computing R(n) = I{n ≥ d} is Ω(log1/4 d). We are
not aware of any explicit sequence of d’s on which this lower bound is attained.
Recently, Czerner and Esparza [8] have shown that for every d, the minimal size
of a population protocol computing R(n) = I{n ≥ d} is Ω(log log log d).

Similar questions have been studied for other predicates. Namely, Blondin
et al. [6] obtained the following general result. Assume that a predicate R is
definable in Presburger arithmetic via some quantifier-free formula of length l
(where all constants are written in binary; for example, the predicate R(n) =
I{n ≥ d} can be given by a formula of length log2 d + O(1)). Then there is a
population protocol with lO(1) states computing R.

Let us mention a related line of research which aims to minimize another
parameter of population protocols – the time of convergence [3]. It is defined as
the expected number of encounters until all agents stably have the right opinion
on the value of a predicate. We refer the reader to [1, 9] for the recent results in
this area.

2 Preliminaries

We only consider population protocols for unary predicates. Moreover, we only
define 1-aware population protocols. For more detailed introduction to popula-
tion protocols, see [5].

Notation. By Z+ we denote the set of positive integers. For n ∈ Z+, we
write [n] = {1, 2, . . . , n}. We also write A = B ⊔ C for three sets A,B,C if
A = B ∪ C and B ∩ C = ∅. By 2A we mean the power set of a set A.

Definition 1. A population protocol Π is a tuple ⟨Q,Q0, Q1, qinit, δ⟩, where

– Q is a finite set of states of Π;
– Q0, Q1 ⊆ Q are such that Q = Q0 ⊔Q1.
– qinit ∈ Q is the initial state of Π;
– δ : Q2 → 2Q

2 \ {∅} is the transition function of Π.

We say that Π is deterministic if |δ(q1, q2)| = 1 for every q1, q2 ∈ Q.



6 A. Kozachinskiy

Let Π = ⟨Q,Q0, Q1, qinit, δ⟩ be a population protocol. Consider any n ∈ Z+.
An n-size configuration of Π is a function C : [n] → Q. Intuitively, elements of
[n] are agents, and the function C maps every agent to the state this agent in.
Define the initial n-size configuration as In : [n] → Q, In(i) = qinit for all i ∈ [n].
A pair of two n-size configurations (C1, C2) is called a transition if there exist
i, j ∈ [n], i ̸= j such that

(C2(i), C2(j)) ∈ δ
(
(C1(i), C1(j))

)
and C2(k) = C1(k) for all k ∈ [n] \ {i, j}.

That is, C2 must be obtained from C1 via an encounter of two distinct agents i
and j. These agents update their states according to δ, and other agents do not
change their states.

We stress that 2 agents participating in an encounter are ordered. It is con-
venient to imagine that one of the agents “initiates” the encounter and the other
agent “responds” to it. This is why δ is defined over ordered pairs of states and
not over 2-element subsets of Q.

Next, let C and D be two n-size configurations. We say that D is reachable
from C if for some k ≥ 1 and for some sequence C1, C2, . . . , Ck of configuration
we have:

– C1 = C,Ck = D;
– for every 1 ≤ i < k we have that (Ci, Ci+1) is a transition.

An execution is an infinite sequence {Ci}∞i=1 of configurations such that C1 =
In for some n and (Ci, Ci+1) is a transition for every i ∈ Z+. We call an execution
E = {Ci}∞i=1 fair if for every two configurations C,D the following holds: if, first,
C occurs infinitely often in E, and second, D is reachable from C, then D also
occurs infinitely often in E.

Definition 2. Let R : Z+ → {0, 1} be some predicate. We say that a population
protocol Π = ⟨Q,Q0, Q1, qinit, δ⟩ is a 1-aware population protocol computing R
if for any n ∈ Z+ the following holds:

– if R(n) = 0, then for every configuration C which is reachable from In we
have C([n]) ⊆ Q0.

– if R(n) = 1, then for every fair execution {Ci}∞i=1 which start from C1 = In
there exists i0 such that for every i ≥ i0 we have Ci([n]) ⊆ Q1.

3 Proof of Theorem 2

Assume that Π = ⟨Q,Q0, Q1qinit, δ⟩ is a 1-aware population protocol computing
the predicate R(n) = I{n ≥ d}. Let C : [n] → Q be a configuration of Π and
q ∈ Q be a state. We say that q can occur from C if there exists a configuration
D of Π such that (a) D is reachable from C; (b) D(i) = q for some i ∈ [n].
Additionally, by a q-agent we mean an agent whose state is q.

For q ∈ Q, let f(q) denote the minimal n ∈ Z+ such that q can occur from
In. If there is no such n at all, set f(q) = +∞. Obviously, |Q| ≥ |f(Q)|, so it is
sufficient to prove that |f(Q)| ≥ log2 d+ 1.



New Bounds for the Flock-of-Birds Problem 7

Observe that 1 = f(qinit). Hence, 1 ∈ f(Q). By definition of 1-awareness,
there exists a state q ∈ Q1 which can occur from Id (just consider any fair
execution starting from Id). On the other hand, no state from Q1 can occur
from In for n < d. Hence, f(q) = d and d ∈ f(Q). It remains to establish the
following lemma.

Lemma 1. Let a < b be two consecutive elements of f(Q). Then b ≤ 2a.

Loosely speaking, this lemma asserts that f(Q) does not contain large gaps.
Since 1, d ∈ f(Q), it shows that between 1 and d there must be about log2(d)
elements of f(Q). In more detail, let 1 = i1 < i2 < . . . < ik = d be elements of
f(Q) up to d, in the increasing order. By Lemma 1, we have:

i2 ≤ 2i1, . . . , ik ≤ 2ik−1.

By taking the product of these inequalities, we obtain:

d = ik ≤ 2k−1 · i1 = 2k−1.

Hence, |f(Q)| ≥ k ≥ log2(d) + 1.

Proof (of Lemma 1). Consider the minimal k such that some q ∈ Q with f(q) = b
can occur from Ib after k encounters. Note that k ≥ 1. Indeed, if k = 0, then
q = qinit. However, f(q) = b > a ≥ 1, so q ̸= qinit.

Due to minimality of k, a q-agent occurs in the last of these k encounters.
Consider this agent and also the second agent participating in this encounter.
Let their states prior to the encounter be q1 and q2. We conclude that a q-agent
can occur whenever we have a q1-agent and a q2-agent in a population (these
agents have to be distinct, even when q1 = q2).

Since q1 and q2 can occur from Ib, we have that f(q1), f(q2) ≤ b. In turn, since
q1, q2 can occur from Ib in less than k encounters, we have f(q1) ̸= b and f(q2) ̸=
b, by minimality of k. Hence, f(q1), f(q2) ≤ a, because a is the predecessor of b
in f(Q). To finish the proof, it is sufficient to show that f(q) ≤ f(q1)+ f(q2). In
other words, we have to show that q can occur from If(q1)+f(q2). By definition, a
q1-agent can occur from If(q1) and a q2-agent can occur from If(q2). Hence, if we
have f(q1) + f(q2) agents in the initial state, the first f(q1) of them are able to
produce a q1-agent, while the last f(q2) of them are able to produce a q2-agent.
In turn, these two agents are able to produce a q-agent. ⊓⊔

4 Proof of Theorem 1: The First Protocol

In this section we establish a 1-aware population protocol with log2(d)+e+O(1)
states, computing the predicate R(n) = I{n ≥ d}. Here, e is the number of 1’s
in the binary representation of d.

Let i1 > i2 > . . . > ie be such that

d = 2i1 + 2i2 + . . .+ 2ie .



8 A. Kozachinskiy

Imagine that initially every agent holds 1 coin. During the protocol, some agents
may run out of coins; we will call these agents bankrupts. At each moment of time,
a non-bankrupt agent can hold 1, 2, 4, . . . , 2i1−1 or 2i1 coins. Additionally, every
bankrupt maintains a counter k ∈ {0, 1, . . . , e − 1}. Under some circumstances,
an agent can come into a special final state (informally, this happens when
this agent becomes convinced that n ≥ d). When an agent comes into the final
state, it forgets the number of coins it had (this will not be problematic because
everything will be decided at this point). So, some agents in the final state might
be bankrupt, while the others not. In total, besides the final state, we have
i1 + 1 ≤ log2(d) + 1 states for non-bankrupt agents and e states for bankrupt
agents; this is at most log2(d) + e+ 2 states.

We now describe the transitions of our protocol. First, assume that two non-
bankrupt agents both having 2i coins meet. If i = i1, then both agents come into
the final state. If i < i1, then one of the agents gets all the coins of the other
one. That is, one of the agents is left with 2i+1 coins, and the other one becomes
a bankrupt with k = 0. Now, if an agent with 2i coins meets an agent with 2j

coins and j ̸= i, nothing happens.
Next, we describe transitions that involve bankrupts. If two bankrupts meet,

nothing happens. Now, assume that a bankrupt whose counter equals k meets
an agent with 2i coins. There are four cases:

1. if k < e− 1 and i = ik+1, then k increments by 1;
2. if k = e− 1 and i = ie, then the bankrupt comes into the final state;
3. if k > 0 and ik > i > ik+1, then the bankrupt comes into the final state;
4. in any other case, the bankrupt sets k = 0.

Finally, if an agent is already in the final state, then everybody this agent meets
also comes into the final state.

The description of the protocol is finished. To show that this protocol is a
1-aware protocol computing the predicate R(n) = I{n ≥ d}, it is sufficient to
show the following two things:

– (soundness) if n < d, then no agent can come into the final state;
– (completeness) if n ≥ d, then, after any finite sequence of encounters, it is

still possible to bring one of the agents into the final state.

Here n is the number of agents in a population. Indeed, soundness ensures that
our protocol satisfies the definition of 1-awareness for n < d. Now, consider any
n ≥ d. Take any fair execution E of n agents. We have to show that there exists
a moment in E, starting from which all agents are always in the final state.
Let C be any configuration which occurs infinitely often in E. By definition
of an execution, C is reachable from In. Hence, by completeness, there is a
configuration D which is reachable from C and which has an agent in the final
state. Now, let this agent meet all the other agents. We obtain a configuration
D′ which is reachable from D and in which all agents are in the final state. By
definition of fairness, D′ occurs in E. Finally, note that once all agents are in
the final state, they will always be in this state.



New Bounds for the Flock-of-Birds Problem 9

We start by showing the soundness. Assume for contradiction that there are
n < d agents, but one of them came into the final state. First, it could happen if
two agents with 2i1 coins met. However, the total number of coins is preserved
throughout the protocol, and initially there are n < d = 2i1+2i2+. . .+2ie < 2·2i1
coins, contradiction.

Second, it might be that some bankrupt came into the final state. This can
happen after an encounter with a non-bankrupt agent. Assume that this non-
bankrupt agent held 2i coins. Then there are two options: if k was the value of
the counter of our bankrupt agent, then either k = e − 1 and i = ie or k > 0
and ik > i > ik+1. Note that in both cases we have 2i1 + . . .+ 2ik + 2i ≥ d. We
will show that there must be at least 2i1 + . . .+ 2ik + 2i distinct coins, and this
would be a contradiction.

Consider the counter of our bankrupt. Its current value is k. It cannot increase
by more than 1 at once. So the last k changes of the counter were as follows:
it became equal to 1, then it became equal to 2 and so on, up to a moment
when it reached its current value. At the moment when it became equal to 1,
our bankrupt saw an agent with 2i1 coins. After that, when it became equal to
2, our bankrupt saw an agent with 2i2 coins, and so on. In the end, when the
counter reached its current value, our bankrupt saw 2ik coins. Additionally, in
the very last encounter, it saw 2i coins. We claim these 2i1 + 2i2 + . . .+ 2ik + 2i

are distinct. To see this, fix any coin. At each moment of time, it belongs to
some group of coins. A point it that the size of this group can only increase over
time. Now, recall that 2i1 > 2i2 > . . . > 2ik > 2i. Since our bankrupt first saw
a group of 2i1 coins, then a smaller group of 2i2 coins and so on, none of these
coins were seen twice. The soundness is proved.

We now show the completeness. Assume that there are n ≥ d agents. Consider
any configuration C which is reachable from the initial one. Let D be a config-
uration which is reachable from C and has the least number of non-bankrupt
agents. If in D there are two agents that both have 2i1 coins, then we can bring
them into the final state. Assume from now on that in D there is at most one
agent with 2i1 coins. Then no two non-bankrupt agents have the same number of
coins in D – otherwise, one could decrease the number of non-bankrupt agents.

Assume that in D there are t non-bankrupt agents, the first one with 2j1

coins, the second one with 2j2 coins, and so on. Here 0 ≤ j1, . . . , jt ≤ i1.
W.l.o.g. j1 > j2 > . . . > jt. Note that

n = 2j1 + 2j2 + . . .+ 2jt ≥ d = 2i1 + 2i2 + . . .+ 2ie .

In particular, i1 = j1. Moreover, either t = e and j1 = i1, . . . je = ie, or there
exists 1 ≤ k < e such that j1 = i1, . . . jk = ik and ik > jk+1 > ik+1.

Now, take any bankrupt (there will be at least one bankrupt already after the
first transition). If its counter is not 0, we reset it to 0 by pairing our bankrupt
with the agent holding 2j1 = 2i1 coins. It is now easy to bring this bankrupt
into the final state. Indeed, if t = e and j1 = i1, . . . je = ie, pair our bankrupt
with the agent holding 2i1 coins, then with the agent holding 2i2 coins, and so
on, up to the agent holding 2ie coins. Now, if there exists 1 ≤ k < e, such that



10 A. Kozachinskiy

j1 = i1, . . . jk = ik and ik > jk+1 > ik+1, pair our bankrupt with the agent
holding 2j1 = 2i1 coins, then with the agent holding 2j2 = 2i2 coins, and so on,
up to the agent holding 2jk+1 coins.

5 Proof of Theorem 1: The Second Protocol

In this section we establish a 1-aware population protocol with log2(d)+z+O(1)
states computing the predicate R(n) = I{n ≥ d}. Here, z is the number of 0’s
in the binary representation of d− 1.

As a warm-up, we first consider d = 2k+1−1. In this case, z = 1. The protocol
from the previous section requires about 2 log2 d states for such d. We present a
simple protocol which only needs log2 d+O(1) states for such d.

5.1 Warm-up: case d = 2k+1 − 1.

Again, initially each agent holds 1 coin. As before, we distinguish between
bankrupt and non-bankrupt agents. A non-bankrupt agent can hold 1, 2, . . . , 2k−1

or 2k coins. Thus, there are k+1 possible states of non-bankrupt agents, 1 state
indicating bankrupts, and also 1 final state – in total, k + 3 = log2 d + O(1)
states.

We now describe the transitions of the protocol. Assume that two agents
both having 2i coins for some 0 ≤ i < k − 1 meet. Then, as in the previous
section, one of them gets 2i+1 coins and the other one becomes bankrupt. Now,
when two agents both having 2k−1 coins meet, one of them gets 2k coins and
the other one gets 1 coin “out of nowhere”. When two agents with 2k coins meet,
both of them come into the final state. Finally, if an agent is already in the final
state, then everybody this agent meets also comes into the final state. All the
other encounters do not change states of agents.

The rest of the argument has the same two parts – “soundness” and “com-
pleteness”. “Soundness” means that if n, the total number of agents, is smaller
than d, then no agent can come into the final state. “Completeness” means that
if n ≥ d, then, after any sequence of encounters, it is still possible to bring one
of the agents into the final state. Similarly to the argument from the previous
section, “soundness” and “completeness” imply that our protocol is a 1-aware
protocol computing R(n) = I{n ≥ d}.

Let us start with the soundness. Assume that n < d. We claim that an “out of
nowhere” coin may occur at most once. Indeed, consider the first time it occurs.
At this moment, one of the agents gets 2k coins. Nothing happens with these 2k

coins unless we get one more agent with 2k coins. However, all the other agents
in total have (n− 2k) + 1 < (2k+1 − 1− 2k) + 1 = 2k coins. Thus, from now on
it is impossible to get two agents with 2k−1 coins. In particular, it is impossible
to get a coin “out of nowhere”. This means that the total number of coins never
exceeds n+1 < 2k+1. However, to bring somebody into the final state, we must
have at least 2k+1 coins. The soundness is proved.



New Bounds for the Flock-of-Birds Problem 11

Let us now show the completeness. Assume that n ≥ d. Let C be any con-
figuration, reachable from the initial configuration of n agents. Assume for con-
tradiction that no configuration with an agent in the final state is reachable
from C. Let D be a configuration which is reachable from C and has the most
coins in total (as any agent can hold up to 2k coins, the total number of coins
is bounded by n2k). Next, let D′ be a configuration which is reachable from D
and has the least number of non-bankrupts. We have at most 1 agent with 2k

coins in D′ – otherwise we could reach the final state. Also, in D′ there is at
most one agent with 2k−1 coins – otherwise we could increase the total number
of coins. Similarly, for every 0 ≤ i < k − 1, there is at most one agent with 2i

coins – otherwise one could decrease the number of non-bankrupts. Thus, we
have at most 1 + 2 + . . .+ 2k = d coins in total. Initially, there are n ≥ d coins.
The total number of coins does not decrease in our protocol. Hence, in D′ there
must be exactly d = 1 + 2 + . . . + 2k coins. In particular, in D′ there must be
an agent with 2k coins. When an agent with 2k coins occurs, we also get a coin
“out of nowhere”. This means that in D′ the total number of coins is bigger than
in the initial configuration. That is, initially there were at most d − 1 coins,
contradiction.

5.2 General case

We assume that d is not a power of 2 (otherwise we could use the protocol from
Section 4). Let 2k be the largest power of 2 below d. Define a = 2k+1−d. Observe
that:

2k+1 − 1 = 11 . . . 1︸ ︷︷ ︸
k+1

= (d− 1) + a

Since 2k < d < 2k+1, there are k+1 digits in the binary representation of d− 1.
Hence, the number of 1’s in the binary representation of a equals the number of
0’s in the binary representation of d− 1 (that is, equals z).

Assume that
a = 2b1 + 2b2 + . . .+ 2bz , (1)

where b1 > b2 > . . . > bz. Note that a = 2k+1 − d < 2k+1 − 2k = 2k. Hence,
b1 < k.

The protocol in the general is essentially the same as for the case d = 2k+1−1,
except that instead of just 1 coin “out of nowhere” we get a coins “out of nowhere”
every time two agents with 2k−1 coins meet. However, there will be additional
technical difficulties, as a might not be a power of 2.

In more detail, a non-bankrupt agent may have

s ∈ {1, 2, . . . , 2k, 2b1 + 2b2 , 2b1 + 2b2 + 2b3 , . . . , 2b1 + 2b2 + . . .+ 2bz = a} coins.

Thus, a non-bankrupt agent can be in one of the k + z states. Taking into
the account the state indicating bankrupts and the final state, in total we have
k+z+2 ≤ log2 d+z+O(1) states. We will call agents that hold 2b1+2b2+. . .+2bi

coins for some i > 1 non-standard.



12 A. Kozachinskiy

Let us now describe transitions of the protocol. When two agents with 2i

coins meet, where 0 ≤ i < k − 1, one of them gets 2i+1 coins and the other one
becomes bankrupt. When two agents with 2k−1 coins meet, one of them gets 2k

coins and the other one gets a coins “out of nowhere”. When two agents with 2k

coins meet, both of them come into the final state. Now, when a non-standard
agent with 2b1 + . . . + 2bi meets a bankrupt, this bankrupt gets 2bi coins, and
the non-standard agent is left with 2b1 + . . . + 2bi−1 coins (if i = 2, the non-
standard agent becomes standard). Finally, if an agent is already in the final
state, then everybody this agent meets also comes into the final state. All the
other encounters do not change the states of agents.

Let us now show the soundness of our protocol. Assume that the number
of agents is n < d. We show that no agent can be brought into the final state.
For that, we first show that we can get a coins out of nowhere at most once.
Indeed, consider the first time this happened. We get one agent with 2k coins.
Other agents have n − 2k + a = n − 2k + (2k+1 − d) < 2k coins in total (the
inequality holds because n < d). Thus, we will never have two agents with 2k−1

coins again. Thus, in any execution, the total number of coins never exceeds
n+ a = n+(2k+1 − d) < 2k+1. However, to bring somebody into the final state,
we must have two agents with 2k coins.

Let us now show the completeness of our protocol. Assume that n ≥ d. Let
C be any configuration, reachable from the initial one. Assume for contradiction
that no configuration with an agent in the final state is reachable from C. Let C1

be a configuration which is reachable from C and has the most coins in total (as
before, this number is bounded by n2k). Next, let C2 be a configuration which
is reachable from C1 and minimizes the following parameter:

p = the number of standard non-bankrupt agents
+ 3× the number of coins belonging to non-standard agents.

In C2 there is at most one agent with 2k coins – otherwise, we could reach the
final state. There is also at most one agent with 2k−1 coins – otherwise, one
could increase the total number of coins. Similarly, for any 0 ≤ i < k − 1, there
is at most one agent in C2 with 2i coins (otherwise, by pairing two agents with
2i coins, one could decrease p).

If there is no agent with 2k coins in C2, then we never got a coins out of
nowhere on our path to C2. Indeed, when we get a coins out of nowhere, we get
an agent with 2k coins, and nothing happens with this agent unless the final state
is reached. So there are 0 non-standard agents in C2 (they are created only when
we get coins out of nowhere). Hence, there are at most 1+2+. . .+2k−1 < 2k < d
coins in C2, contradiction.

Hence, in C2 there is exactly one agent with 2k coins. Clearly, this also
means that on our path to C2 we got a coins out of nowhere exactly once. This
is because the only transition creating an agent with 2k coins is the transition
creating a coins out of nowhere. Indeed, other transitions with standard agents
create smaller power of 2, and transitions with non-standard agents involve at
most a < 2k coins. We conclude that, first, in C2 there is exactly one agent with



New Bounds for the Flock-of-Birds Problem 13

2k coins, second, there are n + a coins in total, and third, there is at most 1
non-standard agent (it could be created only once, when we got a coins out of
nowhere).

Assume first that all agents in C2 are standard. Then n+a ≤ 1+2+. . .+2k =
2k+1 − 1. Hence, n ≤ 2k+1 − 1− a = d− 1, contradiction.

Now, assume that in C2 there is exactly one non-standard agent who holds
2b1 + . . .+2bi coins, i > 1. Let us show that in C2 there exists a bankrupt agent.
Indeed, assume for contradiction that all agents in C2 are non-bankrupt. Now,
leave every agent with exactly one coin. There will be exactly n coins. That is,
exactly a coins were taken. However, from the agent with 2k coins we took 2k−1
coins. Additionally, we took at least 1 coin from the non-standard agent. Hence,
we took at least 2k coins. Since a < 2k, we obtain a contradiction.

Now, pair the non-standard agent with any bankrupt agent. We claim that
the parameter p will decrease (this will be a contradiction with the definition of
C2). Indeed, as a result, we get at most 2 new standard non-bankrupt agents.
However, the number of coins belonging to the non-standard agent decreases by
at least 1. Therefore, p decreases.

Acknowledgements I would like to thank Karoliina Lehtinen and K. S. The-
jaswini for discussions on population protocols.

References

1. Alistarh, D., Aspnes, J., Eisenstat, D., Gelashvili, R., Rivest, R.L.: Time-space
trade-offs in population protocols. In: Proceedings of the twenty-eighth annual
ACM-SIAM symposium on discrete algorithms. pp. 2560–2579. SIAM (2017)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation
in networks of passively mobile finite-state sensors. Distributed computing 18(4),
235–253 (2006)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Fast computation by population protocols
with a leader. Distributed Computing 21(3), 183–199 (2008)

4. Angluin, D., Aspnes, J., Eisenstat, D., Ruppert, E.: The computational power of
population protocols. Distributed Computing 20(4), 279–304 (2007)

5. Aspnes, J., Ruppert, E.: An introduction to population protocols. Middleware for
Network Eccentric and Mobile Applications pp. 97–120 (2009)

6. Blondin, M., Esparza, J., Genest, B., Helfrich, M., Jaax, S.: Succinct population
protocols for presburger arithmetic. In: STACS (2020)

7. Blondin, M., Esparza, J., Jaax, S.: Large Flocks of Small Birds: on
the Minimal Size of Population Protocols. In: Niedermeier, R., Vallée,
B. (eds.) 35th Symposium on Theoretical Aspects of Computer Science
(STACS 2018). Leibniz International Proceedings in Informatics (LIPIcs),
vol. 96, pp. 16:1–16:14. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.STACS.2018.16,
http://drops.dagstuhl.de/opus/volltexte/2018/8511

8. Czerner, P., Esparza, J.: Lower bounds on the state complexity of popula-
tion protocols. In: Proceedings of the 2021 ACM Symposium on Principles of



14 A. Kozachinskiy

Distributed Computing. p. 45–54. PODC’21, Association for Computing Ma-
chinery, New York, NY, USA (2021). https://doi.org/10.1145/3465084.3467912,
https://doi.org/10.1145/3465084.3467912

9. Czerner, P., Guttenberg, R., Helfrich, M., Esparza, J.: Fast and Succinct Popu-
lation Protocols for Presburger Arithmetic. In: Aspnes, J., Michail, O. (eds.) 1st
Symposium on Algorithmic Foundations of Dynamic Networks (SAND 2022). Leib-
niz International Proceedings in Informatics (LIPIcs), vol. 221, pp. 11:1–11:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022),
https://drops.dagstuhl.de/opus/volltexte/2022/15953

10. Diamadi, Z., Fischer, M.J.: A simple game for the study of trust in distributed
systems. Wuhan University Journal of Natural Sciences 6(1), 72–82 (2001)

11. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The
journal of physical chemistry 81(25), 2340–2361 (1977)


